If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+3n-90=0
a = 1; b = 3; c = -90;
Δ = b2-4ac
Δ = 32-4·1·(-90)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{41}}{2*1}=\frac{-3-3\sqrt{41}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{41}}{2*1}=\frac{-3+3\sqrt{41}}{2} $
| 6x-2=5x+17 | | 3(2x+5)+4=7 | | 3/3y=-6 | | 7x+7=-8x | | 2x/3+3=4/13 | | (7/19)2x(7/19)x=(7/19)-5 | | 12×y=-180 | | (719)2x(719)x= | | -5t-3=-3t+5 | | x/11+9=114/11 | | x/8+5=49/8 | | -2x-4=8+x | | 24+3c=12+4c | | 4(x-2)=3×-10 | | 3(7-2=x+2 | | x+8+10+x+8+10=6 | | 14x+6x=0 | | x-8.4=-8.3 | | x=6=x+8+10+x+8+10 | | 2x+2x+2x+2x=x+8+10+x+8+10 | | 2a^2=160 | | 4w-18= | | 6−4x=26 | | 15x-0.56=18 | | 2x^2+24x+82=0 | | 2x^2=24x+82 | | 1/4y-6=-18 | | y/2+2=-17 | | 3x=33,x= | | 2(2b)=4b | | 2x+x+40=90 | | 5r=4r-17 |